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This document provides supplementary information to “NeuPh: Scalable, and Gener-

alizable Neural Phase Retrieval with Local Conditional Neural Fields”. We provide more

details including the forward model of our imaging process, model-based reconstruction

algorithms, detailed NeuPh network structure, reconstruction enhancement techniques of

NeuPh network, data acquisition and preparation, details of network training, ablation

study, and supplementary NeuPh reconstruction result.

1 Model-based reconstruction

We utilize Differential Phase Contrast (DPC)20 for the initial estimation of cell phase

images. It is important to acknowledge that DPC reconstruction relies on the weak object

approximation, ensuring accurate results only when the phase change of the sample is

below 0.64 radians32. However, our experimental setup involves Hela cell samples fixed

in ethanol or formalin, leading to phase changes exceeding 2π, violating the weak object

approximation and resulting in an underestimation of the object’s phase. Despite these

limitations, the DPC estimation serves as a valuable low-resolution initial guess for the
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object’s phase24, and we incorporate this estimation into our network.

In our multiplexed Fourier Ptychographic Microscopy (FPM) experiment, utilizing

only the five multiplexed intensity measurements to solve the FPM phase retrieval prob-

lem using the model-based algorithm results in severe reconstruction artifacts due to the

highly ill-posed inverse problem23. To address this, for network training and to obtain

ground truth phase images, we employ the standard sequential FPM measurement, it-

eratively reconstructing high-resolution phase images21. Details of the DPC and FPM

forward models as well as the model-based DPC and FPM reconstruction are detailed in

the following Secs. 1.1, 1.2, 1.3.

1.1 DPC-based phase imaging

Here, we briefly explain the principle of DPC phase imaging; additional details can be

found in Ref. 20. DPC is a technique used to recover quantitative phase information from

intensity images acquired with asymmetric illumination patterns. It offers an improved

lateral resolution of 2× compared to the native objective NA.

Under the weak object assumption: o(c) = e−µ(c)+iψ(c) ≈ 1 − µ(c) + iψ(c), where

µ(c) represents absorption and ψ(c) represents phase, a BF intensity measurement IS(c)

can be approximated to have a linear relationship with the sample20:

IS(u) = Bδ(u) +Habs(u)M(u) +HphΨ(u), (1)

where IS(u),M(u),Ψ(u) denote the spectrum of Is(c), µ(c) and ψ(c), respectively, and
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u = (ux, uy) represents the spatial frequency. B is a constant representing the back-

ground signal, and δ(u) is the Dirac delta function. Habs, Hph are the transfer functions

for amplitude and phase, respectively.

By subtracting the background term and normalizing the acquired BF intensity image,

the DPC reconstruction can be formulated as:

min
M,Ψ

Nbf∑
j=1

∥IS−,j(u)−Habs,j(u)M(u)−Hph,jΨ(u)∥22+ τ1R1(M(u))+ τ2R2(Ψ(u)), (2)

where IS−(u) represents the spectrum of the background-subtracted intensity image, j is

the index of DPC measurements, Nbf = 2 denotes the number of captured BF images,

and ∥ · ∥2 represents the L2 norm. τ1, τ2 are the regularization parameters, and R1 and

R2 represent the regularization terms that incorporate prior information about the sample.

Here, we utilized the L2 regularization to solve the inverse problem20.

1.2 FPM forward model

FPM is a recently developed computational imaging technique that enables increasing the

imaging system’s space-bandwidth product (SBP) by synthesizing multiple low-resolution

images into a high-resolution image across a wide FOV22. The forward model of the

standard sequential FPM describes the intensity image obtained from a single LED illu-

mination. After appropriate normalization to account for the system magnification, it can

be expressed as:

Ii(c) = |F−1
[O(u−ui)P (u)](c)|

2, (3)
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where Ii(c) represents the captured low-resolution intensity image for the ith LED. | · |

takes the amplitude of the complex field, and c = (x, y) denotes the lateral coordinates.

F−1 represents the inverse Fourier transform, and O(u) is the spectrum of the object

o(c). Each LED illumination is modeled as a plane wave with spatial frequency ui =

(uxi, uyi) = (sin θxi/λ, sin θyi/λ), where (θxi, θyi) defines the illumination angle of the ith

LED and λ denotes the central wavelength. The pupil function of the microscope, denoted

by P (u), is a circular low-pass filter with a diameter of 2NA/λ, set by the objective lens

NA.

In the case of multiplexed illumination, the sample is illuminated by different sets

of LEDs based on different illumination patterns. The captured intensity image can be

modeled as the sum of multiple intensity images obtained from individual LEDs21:

IS(c) =
∑
i∈S

Ii(c), (4)

where the symbol ∈ indicates that i is an element of the illumination set S. We use this

multiplexed illumination forward model to generate our simulated data as mentioned in

the main text.

1.3 Model-based FPM reconstruction

The standard sequential FPM reconstruction involves solving a non-convex optimization

problem that jointly estimates the object O(u) and the pupil function P (u) by solving a
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minimization problem:

min
O(k),P (k),{bi}

Nled∑
i=1

∥∥√Ii(c)− |F−1
[O(u−ui)P (u)](c)| − bi

∥∥2

2
, (5)

where bi is the background offset for the ith image, and Nled = 185 is the total num-

ber of LEDs used in the standard sequential FPM measurement. The reconstruction

from the standard sequential FPM measurement is performed by an iterative algorithm

by following21. The results are used as the ground truth for training the NeuPh networks.

It is worth noting that if only the five multiplexed intensity measurements are used to

solve the FPM phase retrieval problem, the model-based algorithm results in severe re-

construction artifacts due to the highly ill-posed inverse problem23.

2 Network structure of NeuPh

Our NeuPh network consists of a CNN-based encoder and an MLP-based decoder. A

detailed visual illustration of the network can be found in Fig. S1.

Encoder: We use three CNN-based encoders, denoted as {e1, e2, e3} to independently

encode three different types of input: BF, DF, and DPC images. Each encoder follows a

deep residual network structure similar to Ref. 33. The encoders take specific image types

as input and initially extract spatial features using a convolutional layer. The number of

input channels for the first convolutional layer varies according to the number of input

images: 2 for two BF images, 3 for three DF images, and 1 for the DPC image. The

output channels for the first convolutional layer are fixed at 128 for all encoders.
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After the initial convolutional layer, we employ 32 residual blocks to further extract

spatial feature maps. Each residual block consists of two convolutional layers 128 input

and output channels, a ReLU activation layer, and a multiplication layer with a factor of

1. Skip connections are incorporated in the residual blocks, where feature maps are added

together. The spatial features extracted by the residual blocks are then passed through an

output convolutional layer with 128 input and output channels. Finally, these features are

added with the feature maps provided by the initial convolutional layer with a long skip

connection. All convolutional layers use 3× 3 convolutional kernels.

Once the feature maps are extracted from the three different types of input, they are

concatenated to form the encoded latent space representation Φ ∈ RH×W×D of the im-

age, where H and W represent the number of pixels along the x and y axes, respectively,

while D represents the number of concatenated channels, which is calculated as 3 (num-

ber of encoders) × 128 (feature maps learned by each encoder) = 384. The H and W

remain the same as the input low-resolution measurements, as we do not include pooling

or upsampling layers in our encoder networks. The network structure of the encoders is

visually depicted in Fig. S1: Encoder.
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Fig S1: Network structure. The network structure of NeuPh consists of a CNN-based en-
coder and an MLP-based decoder. Encoder: The Encoder module includes three CNNs
(e1,e2,e3). Each encoder consists of an input convolutional layer, 32 residual blocks, and
an output convolutional layer. The input channel of the input convolutional layer depends
on the number of input images, denoted as “input” in the figure. For two brightfield inten-
sity images, it has 2 channels. For three darkfield intensity images, it has 3 channels. And
for the differential phase contrast image, it has 1 channel. The output channel for all three
encoders is set to 128. Each residual block involves two convolutional layers (input chan-
nel: 128, output channel: 128), followed by a ReLU activation layer and a multiplication
layer with a multiplication factor of 1. Each residual block utilizes a skip connection
that adds the feature maps. The spatial features extracted by the residual blocks are then
passed through the output convolutional layer, which has 128 input channels and 128 out-
put channels. Finally, features extracted by the output convolutional layer are added with
the feature maps provided by the input convolutional layer by a skip connection. All con-
volutional layers use 3×3 convolutional kernels. The feature maps generated by the three
encoders are concatenated together to form the encoded latent space representation. De-
coder: To generate a high-resolution image at the queried position based on the encoded
latent vectors, we employ a 5-layer MLP with ReLU activation and hidden dimensions of
256 as the decoding function fθ. The latent vector ϕ associated with the relative coordi-
nates ∆c of the queried position c (green dot) is constructed by concatenating the latent
vectors generated by the three encoders: ϕ1, ϕ2, and ϕ3. The input dimension of the MLP
is 3460, calculated by 384 (feature maps learned by the encoder) × 9 (feature unfolding)
+ 2 (dimension of the coordinates) + 2 (cell decoding). The output dimension of the MLP
is 1, representing the predicted phase value at the queried position. During training, we
compared the MLP prediction fθ(∆c, ϕ) with the ground truth ψ(c) to train our network.
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Decoder: To represent a high-resolution image in a continuous representation, we

employ the LIIF approach 26, which represents an object in the encoded latent space and

utilizes an MLP as a decoding function to decode the object from the latent space back to

the object domain. In our case, we use a standard 5-layer MLP as the decoder, denoted

as fθ. Each layer of the MLP has 256 neurons, and ReLU activation is applied to the first

four layers, while the last layer is unactivated. The input dimension of the MLP is 3460,

which is obtained by 384 (number of features maps learned by the encoder) × 9 (feature

unfolding) + 2 (dimension of the coordinates) + 2 (cell decoding), where feature unfolding

and cell decoding are reconstruction enhancement techniques explained in Sec. 3. The

output dimension of the MLP is 1, representing the predicted phase value at the queried

location. The structure of the decoder is illustrated in Fig. S1: Decoder.

The decoding function can be expressed as:

ψ̂(c) = fθ(c, ϕ), (6)

where ψ̂(c) is the decoded physical quantity, such as the phase value in our case, at

the queried position c. The variable c represents the 2D coordinates in the continuous

image domain, assumed to range in [−h, h] and [−w,w] for the height and the width,

respectively. ϕ ∈ R1×1×D is the selected latent vector from the latent space representation

Φ, which is related to the queried position. The decoding function fθ(c, ϕ) can be seen as

a mapping function fθ(·, ϕ) : c → ψ(c) that maps a coordinate to the phase value at the

8



position c, with the latent vector ϕ as conditional parameters.

It should be noted that the latent space is a low-dimensional space with a dimension

H ×W ×D, where we assign 2D coordinates to each latent vector with the pre-defined

sparse grids, as depicted by the gray circles in Fig. S1 Encoder. However, for a continuous

representation, we may need to query arbitrary coordinates that are not on the predefined

grids, as shown by the green circle in Fig. S1 Encoder. Consequently, we cannot obtain

the exact latent vector for the queried position c since the density of the grid in the latent

space is much lower than that of the high-resolution grid (H ′ ×W ′) for the same FOV.

To bypass this issue, we adopt the LIIF approach 26, which assumes that the latent space

is continuous; in addition, each latent vector can represent a local part of the continuous

image and is responsible for predicting the signals at the set of coordinates that are closest

to itself. Accordingly, we reformulate Eq. (6) as:

ψ̂(c) = fθ(∆c, ϕ), (7)

where ϕ is the selected latent vector for coordinate c, determined by the nearest latent

vector based on the Euclidean distance. Here, ∆c = c − v and v represent the actual

coordinate of the selected latent vector ϕ, respectively. Taking Fig. S1 Encoder as an

example, the bottom-left gray circle represents the selected latent vector, and v denotes

the coordinate of this chosen latent vector. To further improve our reconstruction result,

we employ the reconstruction enhancement techniques, which are detailed in Sec. 3.
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In summary, our network utilizes CNN-based encoders to encode the measurements

into a low-dimensional latent space representation, where coordinates are assigned to la-

tent vectors using predefined sparse grids. We can then query the phase value at arbitrary

coordinates and use the MLP decoder to decode the physical quantity based on the se-

lected latent vector. The latent space representation, generated by the encoders, adapts to

different objects, allowing our decoding function fθ(·, ϕ) to demonstrate robust general-

ization capabilities compared to traditional NF methods.

3 Reconstruction enhancement techniques

To enhance the information extraction from the latent space and improve the continuity

of the reconstruction, we utilize feature unfolding, local ensemble, and cell decoding

techniques as described in the LIIF method26.

Feature unfolding: To capture additional information beyond a single latent vector

ϕ, we employ feature unfolding, which extends ϕ to ϕ̂. Specifically, ϕ̂ is obtained by

concatenating the 3× 3 neighboring latent vectors of ϕ, as illustrated in Fig. S2(a), and is

defined as:

ϕ̂p,q = Concat({ϕp+l,q+n})l,n∈{−1,0,1}, (8)

where Concat represents the concatenation of a set of latent vectors. The indices p and

q correspond to the selected latent code ϕ that matches the queried coordinate c in the

latent space. If the queried position is at the image’s edge, the latent space Φ is padded

with zero-vectors.
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Fig S2: Reconstruction enhancement techniques. (a) Feature unfolding. The 3× 3 neigh-
borhood latent vectors (blue dots) surrounding the selected latent vector (green dot) are
concatenated together to provide enriched information. (b) Cell decoding. The pixel size
(ch, cw) are concatenated with the coordinates to improve the reconstruction. (c) Local
ensemble. The local ensemble is used to enhance the continuity of the reconstruction. We
utilize the nearest four latent vectors (blue dots, {ϕ00, ϕ01, ϕ10, ϕ11}) to make predictions.
These four predictions are then merged by voting with normalized confidences, which are
proportional to the area of the rectangle formed between the query point and its selected
latent vector’s diagonal counterpart.

Cell decoding: We incorporate cell decoding, which takes into account the pixel size

information in the decoding function fθ, as illustrated in Fig. S2(b). The updated decoding

function is expressed as:

ψ̂(c) = fθ,cell([∆c, ch, cw], ϕ̂), (9)

where the [ch, cw] specifies the height and width of the query pixel with the desired pixel

size in the reconstruction. The notation [∆c, ch, cw] denotes the concatenation of the coor-

dinate and the pixel size. Thus, fθ,cell([∆c, ch, cw], ϕ̂) signifies that the decoding function

reconstructs the value with the relative coordinate ∆c and the pixel size (ch, cw), condi-

tioned on the “unfolded” latent vector ϕ̂ at the coordinate c.
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Local ensemble A concern with Eq. (9) is the discontinuous prediction when the

queried coordinate crosses the middle area between two neighboring latent vectors, re-

sulting in a switch between latent codes (i.e. the selection of the nearest latent vector

changes). For example, it occurs when the queried coordinate c (green dot) crosses the

dashed line depicted in Fig. S2(c). Around such coordinates, predictions for two infinites-

imally close coordinates are generated based on different latent vectors. Due to imper-

fections in the learned encoder Eθe and decoding function fθ, these borders may exhibit

discontinuous patterns. To address this issue, we employ the local ensemble technique,

extending Eq. (9) to:

ψ̂(c) =
∑

t∈{00,01,10,11}

St
S

· fθ,cell([∆ct, ch, cw], ϕ̂t), (10)

where ϕ̂t (t ∈ {00, 01, 10, 11}) represents the four nearest latent vectors (top-left, top-

right, bottom-left, bottom-right) based on the queried coordinate, ∆ct denotes the relative

coordinate between the queried coordinate and the selected latent vector, and St indicates

the area of the rectangle between the queried coordinate and the coordinate of latent vector

diagonal to the selected latent vector, as shown in Fig. S2(c). The weights St are normal-

ized by S =
∑

t St. Moreover, the latent space representation Φ is mirror-padded outside

the edge, allowing the above formula to work for coordinates near the image borders.
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4 Data acquisition and preparation

In our study, we train our NeuPh using both experimental and simulated datasets. We first

capture the experimental dataset as mentioned in the main manuscript Sec. 2.1. To pre-

pare the input for training the NeuPh network, we performed the following steps. Firstly,

we extracted the central 250 × 250 pixels from the raw low-resolution intensity images.

Then, we applied dynamic range correction by clipping the minimum 0.1% and maximum

0.1% pixel values for each measurement, following the approach described in Ref. 23.

This correction helped suppress shot noise and hot pixels. Next, we used the DPC re-

construction algorithm, as explained in Sec. 1.1, to generate a linear estimation of the

phase based on the two BF intensity measurements. Additionally, we normalized the

LED intensities by dividing the intensity images by their mean value. We also applied a

morphological open operator to estimate and subtract the slow-changing background, fol-

lowing the method described in Ref. 23. This process effectively eliminated the unwanted

background components and improved the accuracy of the subsequent learning process.

Finally, we concatenated the preprocessed low-resolution intensity images with the DPC

image.

To obtain ground-truth high-resolution phase images for the experimental data, we

applied the following procedure. Firstly, for each standard FPM measurement, we se-

quentially illuminated 185 LEDs and captured the corresponding low-resolution intensity

images. Then, we employed the model-based FPM reconstruction algorithm, detailed in

Sec. 1.3, to reconstruct the phase of the central 250 × 250-pixel region and produce a
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high-resolution phase image of 1500 × 1500 pixels. Next, we applied a phase unwrap-

ping algorithm34 to unwrap the reconstructed high-resolution phase image. Furthermore,

we addressed the slow-varying background component present in the reconstructed high-

resolution phase image by utilizing a morphological open operator with a kernel size of

50. This step removed the slowly changing background, enhancing the clarity and quality

of the phase image. To normalize the range of values in the high-resolution phase image,

we clipped the phase range within [0, 12] radian for the Hela cells fixed in both ethanol

and formalin. Subsequently, we divided the phase images by this clipping threshold, re-

sulting in a normalized range of values within [0, 1]. Finally, we paired the preprocessed

low-resolution input images with the normalized high-resolution reconstructions, which

served as the training data for our neural network.

We also create a simulated dataset to train our network. The whole dataset consisted

of 900 cropped high-resolution natural images from the DIV2K dataset25, each with a size

of 600×600 pixels. Since the natural images have different histogram and spectral distri-

butions compared to the biological cell images, we performed a preprocessing procedure

on these images. The preprocessing involved removing the slowly varying background

using an open operator with a kernel size of 20. Then, we applied a maximum value

threshold of 0.6 to crop the image values and normalized the cropped images to the range

[0, 1] by dividing them by this threshold. To ensure consistency between the simulated

dataset and the experimental Hela cells fixed in ethanol (here, we only utilize the data for

the Hela cells fixed in ethanol since it contains more frequency content), we took steps to
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match the power spectrum density (PSD) of the simulated dataset with the experimental

data. This involved multiplying the spectrum of each simulated data with a correction

map, whose value at a specific frequency is determined by the ratio between the square

root of the PSDs of the experimental and the simulated dataset. We then normalized the

spectrum-corrected image by dividing it by its maximum value. The resulting normalized

and spectrum-corrected high-resolution images were used as ground truth for our net-

work. The effect of the preprocessing procedure for the natural images can be observed

in Fig. S3.
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Fig S3: Preprocessing of natural images. To align the statistical characteristics of natural
images with the experimental cell images, a preprocessing step is performed as described
in Sec. 4. The figure presents the effects of this preprocessing step. (a) Model-based re-
construction of ethanol-fixed Hela cells. First column: an example of preprocessed high-
resolution model-based FPM reconstruction. Second column: the histogram of the phase
values derived from 22 preprocessed high-resolution Hela cell images. Third column: the
PSD of the 22 preprocessed high-resolution reconstructions. The figure demonstrates that
the phase values are predominantly distributed within the range of [0, 7] radian. However,
a small fraction, approximately 0.5% of pixels lie outside this range. To capture valu-
able information and eliminate noisy pixels, the phase of the preprocessed experimental
dataset is set within the range of [0, 12] radian. (b) Raw natural images in the DIV2K
dataset. First column: an example high-resolution natural image in DIV2K dataset. Sec-
ond column: the histogram of the pixel values obtained from 900 high-resolution natural
images. Third column: the PSD of the 900 high-resolution natural images. (c) Prepro-
cessed natural images. First column: an example background-removed and spectrum-
corrected natural image. Second column: the histogram of the pixel values derived from
900 preprocessed natural images. Third column: the PSD of the 900 preprocessed im-
ages. The profiles of the PSD images along the diagonal (indicated by the dashed black
lines) are shown in the top right corner of each image.
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To generate the un-normalized object phase, we multiplied the normalized and spectrum-

corrected high-resolution images by a factor of 9 and then subtracted 2.5, resulting in a

phase range of [−2.5, 6.5] radian. This range corresponds closely to the predominant dis-

tribution observed in the histogram of the experimental ethanol-fixed Hela cell dataset

and also balances the effect from the large phase values observed in the experimental

dataset. To simulate the low-resolution intensity images, we used Eq. (4) as the forward

model and downsampled the simulated intensity images to 100 × 100 pixels. Through-

out the simulation process, we make the assumption that our simulated system does not

exhibit aberration. As a result, the pupil function P (u) in Eq. (4) is considered an ideal

circular low-pass filter, with a value of 1 within the circular region and 0 outside of it.

We applied the same preprocessing steps used for the experimental dataset to obtain the

preprocessed simulated low-resolution intensity images, which served as the input for

the network. Finally, we paired the preprocessed high-resolution images with their cor-

responding low-resolution intensity images to create the training pairs for the network

training.

5 Network training

5.1 Implementation of network training

To train our network with either purely experimental or simulated datasets, we follow

the procedure outlined in Sec. 4 to prepare the training data, which consists of paired

input images and the corresponding ground-truth phase images. To train networks using
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a mixed dataset of experimental and simulated data, we adjust the value range of the

ground truth images in the simulated dataset (originally ranging from 0 to 1) by scaling

them with a factor of 0.75. This adjustment aligns the phase range of the simulated

dataset ([0, 9] radians) to a normalized value range of [0, 0.75], matching the experimental

dataset, which aligns the phase range ([0, 12] radians) to a normalized value range of [0,

1]. During each training step, we randomly crop a smaller patch of size 48 × 48 pixels

from the input images. Recall that the size of the raw input measurements differs for the

experimental and simulated datasets, with dimensions of 250× 250 pixels and 100× 100

pixels respectively.

We encode the input using three encoders, as described in detail in Sec. 2, resulting in

a latent space representation Φ with dimensions of H = 48,W = 48, D = 384.

Subsequently, we assign 2D coordinates to each latent vector ϕ ∈ R1×1×384, which is

defined on a sparse grid with the same grid density of 48 × 48 as the input. The height

and width range of the latent space is set as [−H,H] and [−W,W ] respectively, resulting

in a distance of 2 between neighboring latent vectors.

The high-resolution ground-truth phase images, with an original pixel resolution of

1500 × 1500 pixels for the experimental dataset and 600 × 600 pixels for the simulated

dataset, are correspondingly cropped into 288 × 288-pixel patches to match the same

FOV as the input images. This scaling indicates that our ground-truth high-resolution

phase image has a pixel resolution 6× higher than that of the input in both the x and y

directions.
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Similar to the assignment of 2D coordinates in the latent space, we assign 2D coordi-

nates to the cropped high-resolution image within the height and width range of [−H,H]

and [−W,W ] respectively. The grid density is increased to 288 × 288, and the distance

between adjacent pixels is reduced to 1/3. This coordinate assignment ensures positional

consistency across the measurement domain, latent space, and reconstruction domain, as-

suming that the information within a 2D image is inherently positionally dependent and

the information at a given position is preserved across different domains.

Next, we randomly select 2304 pixels from the high-resolution image patch as the

ground-truth phase values by randomly choosing the coordinates defined in the high-

resolution grid. These coordinates are also used to select the corresponding latent vectors

ϕ from Φ, as described in Sec. 2. The selected latent vectors and relative coordinates are

concatenated and input into the MLP. We further employ the reconstruction enhancement

techniques detailed in Sec. 3.

The output of the MLP is the predicted phase value at the queried position c, and we

train our network by comparing this prediction with the ground truth using the L1 norm.

It is important to note that during the training stage, we define grids for the high-

resolution ground-truth image and query the high-resolution image at these predefined

coordinates. However, after training, we no longer need to query points at predefined

grids and can freely query phase values at any coordinates since our MLP can effectively

represent the object in a continuous manner.

We utilize the PyTorch framework for training our network. The Adam optimizer is
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employed, with an initial learning rate of 1× 10−4. To adaptively adjust the learning rate

during training, we use the ReduceLROnPlateau method in PyTorch. This method

reduces the learning rate by a factor of 0.2 when the loss function fails to improve. During

training, except for the ablation study (as explained in Sec. 6), a batch size of 5 is used,

and the total number of coordinates we used at each step is 2304× 5 = 11520.

5.2 Training with different datasets

To thoroughly assess NeuPh’s performance and investigate the impact of domain shift

between simulated and experimental data on the reconstruction results, we trained 11 Ne-

uPh models using various datasets. As mentioned in Sec. 2.1 of the main manuscript,

we prepared three types of data: 22 pairs of Hela cells fixed in ethanol, 20 pairs fixed in

formalin, and 900 pairs of simulated natural images. We use different numbers of these

prepared images to train different networks, and the quantities for training and validation

across different networks are summarized in Table S1, with the remaining data reserved

for testing. These trained networks are categorized into the following four different sce-

narios:

Training with the full experimental dataset. We train two networks (NeuPhE(18),

NeuPhF(16)) using experimentally captured Hela cell datasets.

Training with a single pair of experimental dataset. To further evaluate NeuPh’s

generalization capability, we conduct training using only a single training image pair

from the two cell types, denoted as NeuPhE(1) and NeuPhF(1). This allows us to assess
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the network’s performance when trained on extremely limited experimental data.

Training with purely simulated natural images dataset. We also train three net-

works using only simulated datasets with the different number of natural images, denoted

as NeuPhSim(18), NeuPhSim(16) and NeuPhSim. The NeuPhSim(18) and NeuPhSim(16) net-

works are used to compare with the NeuPhE(18) and NeuPhF(16) respectively to study the

impact of domain shift between the experiment and simulation on NeuPh’s reconstruc-

tion. To fully utilize the available simulated images, we further train NeuPhSim. These

simulated datasets allow us to assess the network’s performance in the absence of an

experimental training dataset, and to gain insights into its ability to generalize from sim-

ulation to experiment.

Training with mixed experimental and simulated images. To further investigate the

impact of domain shift between the experiment and simulation on NeuPh’s reconstruction

results, we conduct further training using datasets with different proportions of experi-

mental and simulated images. To facilitate a comprehensive analysis, we maintained the

total number of training data consistent with the experimental dataset while adjusting the

ratio between experimental and simulated data within the training dataset. Specifically,

for comparison with NeuPhE(18)), we train NeuPhE:Sim(9:9) and NeuPhE:Sim(1:17), and for

comparison with NeuPhF(16), we train NeuPhF:Sim(8:8) and NeuPhF:Sim(1:15). Addition-

ally, as mentioned before, we trained NeuPh using pure-simulated datasets (NeuPhSim(18),

NeuPhSim(16)). This analysis enables us to further investigate how changes in the dataset

composition affect NeuPh’s reconstruction performance.
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Additionally, to assess the networks’ performance outside the training FOV, we col-

lected two additional datasets, each containing 100 paired samples of Hela cells–one set

fixed in ethanol and the other in formalin–as testing datasets.

Table S1: Training NeuPh with various datasets using different numbers and types of
images. ”Hela(E)” and ”Hela(F)” denote experimental cells fixed in ethanol or formalin,
respectively, while ”Nature image” refers to simulated natural images. The numbers listed
in table represent the quantity of images used for training the networks. Note that for
networks trained with only one paired image (NeuPhE(1), NeuPhF(1)), we assumed only a
single image is available and thus use that single image for both training and validation.

Network Training dataset Validation dataset

NeuPhE(18) 18 Hela(E) 2 Hela(E)
NeuPhE(1) 1 Hela(E) 1 Hela(E)
NeuPhE:Sim(9:9) 9 Hela(E) + 9 Nature image 1 Hela(E) + 1 Nature image
NeuPhE:Sim(1:17) 1 Hela(E) + 17 Nature image 1 Hela(E) + 1 Nature image
NeuPhSim(18) 18 Nature image 2 Nature image

NeuPhF(16) 16 Hela (F) 2 Hela(F)
NeuPhF(1) 1 Hela (F) 1 Hela(F)
NeuPhF:Sim(8:8) 8 Hela(F) + 8 Nature image 1 Hela(F) + 1 Nature image
NeuPhF:Sim(1:15) 1 Hela(F) + 15 Nature image 1 Hela(F) + 1 Nature image
NeuPhSim(16) 16 Nature image 2 Nature image

NeuPhSim 800 Nature image 50 Nature image
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6 Ablation study

6.1 DPC initialization

In our NeuPh structure, we include the DPC-based reconstruction as an input for the

encoder e3. To fully evaluate the impact of this initial reconstruction on the final high-

resolution phase retrieval, we conducted an ablation study by removing the encoder e3

and inputting only the bright and dark field intensity images into e1 and e2, respectively.

We use full experimental data to train networks. The reconstruction results are shown

in Fig. S6, and the test results for another 100 samples are presented in Table S2. From

these results, we observe that the DPC initial reconstruction input helps improve our

reconstruction. However, our network can still successfully reconstruct high-resolution

phase images purely from the low-resolution intensity images, addressing the highly ill-

posed problem.

6.2 Cell decoding

In our NeuPh, we introduce three different types of reconstruction enhancement tech-

niques: feature unfolding, cell decoding, and local ensemble. The effects of these three

techniques are fully studied in the Ref. 26. However, there are some differences between

our dataset and the dataset used in Chen et al’s26 study. In our experiment, we train

our NeuPh with a fixed six-times upsampling, which satisfies the minimum sampling re-

quirement for the resolution-improved imaging system. In contrast, Chen et al. train

their network with continuous random downsampling scales uniformly sampled in ×1-
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×4, meaning their cell decoding pixel size changes during training, while ours remains

fixed. To fully evaluate the effect of the cell decoding technique in our experiment, we

conduct an ablation study, training the network with and without cell decoding. We train

our network with full experimental dataset and the results, shown in Fig. S6 and Table S2,

indicate that cell decoding improves our reconstruction results.

6.3 MLP-based decoder

To evaluate the impact of using MLP as a decoder and coordinate-based training strategy,

we conducted experiments to assess if NeuPh achieves better reconstruction results com-

pared to CNN architectures. To rigorously evaluate NeuPh against CNNs, we replaced

our MLP decoder with a CNN structure and trained it using the same dataset as NeuPh.

Specifically, as shown in Fig. S4, we utilized NeuPh’s encoder to obtain the latent space.

Subsequently, instead of employing an MLP decoder, we utilized a widely used deep

residual network structure as a decoder whose structure is similar to the encoder (e1), as

depicted in Fig. S1. To ensure the same number of trainable parameters with NeuPh, we

initially employed a convolutional layer with 64 channels, followed by 12 residual blocks

with 64 channels, and followed with another convolutional layer yielding a single output

channel for reconstruction prediction in our CNN-based decoder. Notably, we omitted

the long skip connection in this CNN-based decoder, as the number of output channels of

the first convolutional layer (64) differs from the final output channel number (1).

During CNN training, like NeuPh, we randomly cropped 48× 48 small patches from
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input images at each training step. It is noteworthy that for NeuPh, theoretically, this step

is unnecessary since we employ randomly selected points to train our network, effectively

expanding our training dataset from a single paired image to millions of paired pixels. We

include this step in NeuPh to further reduce memory cost. Conversely, in CNNs, this step

is essential as it is similar to data augmentation. Without it, overfitting is likely, partic-

ularly when training with only a single paired image. To optimize CNN performance,

we did not use upsampling layers to increase lateral pixel number by 6×, instead, we

employ cubic interpolation for our input low-resolution images as Ref. 23. Consequently,

the input lateral pixel number was set to 288 × 288. Subsequently, we fed the BF, DF,

and DPC images into three encoders as NeuPh and employed our CNN-based decoder to

reconstruct the image from the latent space. High-resolution images served as the ground

truth. Both the initial learning rate and learning rate adjustment strategy mirrored Ne-

uPh’s settings. However, due to increased lateral pixel numbers and the utilization of the

CNN-based decoder, the memory requirements for storing intermediate variables were

several times larger than NeuPh. To assess the extreme case and consider the memory of

our GPU, we trained our CNN with a single paired image with a batch size setting of 1.

The NeuPh is thus also retrained with batch size 1 for a fair comparison. Both networks

were trained until convergence. Because of the computational cost limitation, we cannot

infer the whole image (250 × 250 pixels) directly using the CNN, thus we performed

inference patch-by-patch (48 × 48 pixels) and then utilized alpha blending as Ref. 23 to

obtain the final result. In summary, we ensure a fair comparison and employ several tech-
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niques to enhance the performance of CNN. While there may be additional techniques to

fine-tune the CNN structure, in comparison, our NeuPh requires only 5 fully connected

layers and avoids the need for designing complex structures. We utilize quantitative met-

rics such as mean square error (MSE), structural similarity index measure (SSIM), peak

signal-to-noise ratio (PSNR), and frequency measurement (FM)28 to evaluate the recon-

struction and the comparison result is detailed in Fig. 3(b) in the main text with additional

results shown in Fig. S7(b) and S10. The metrics for Fig. 3(b), S7(b) and S10 are shown

in Table S3. The metrics for an additional 100 test samples are presented in Table S4.

As we can see from the figure and tables, our NeuPh reconstruction is better than the

CNN-based structure.
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Fig S4: CNN structure used for ablation study. We replace the NeuPh’s MLP-based de-
coder with a CNN-based structure. The Encoder module is the same as NeuPh, including
three CNNs (e1,e2,e3). The Decoder module, instead, uses a CNN-based deep residual
network (d). The input-output channels in the residual blocks are set at 128-128 for the
encoders (e1,e2,e3) and 64-64 for the decoder (d), respectively. Notably, the lateral pixel
dimensions at the latent space of the CNN are 288× 288 since the raw FPM input is first
preprocessed by cubic interpolation, differing from NeuPh’s dimension (64× 64).
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7 Supplementary NeuPh reconstruction result
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Fig S5: NeuPh learns continuous-domain representation and can reconstruct phase maps
on an arbitrary pixel grid (illustration with 6×, 21×, 49.8×, 73.5×, and 105.9× upsam-
pling compared with the raw measurement image). (a) Model-based FPM reconstruction
with zoom-in areas. Reconstruction artifacts are noted by red arrows. (b) NeuPh contin-
uous reconstruction of high-resolution phase image.
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Fig S6: Effect of DPC initial reconstruction and cell decoding on NeuPh. Reconstructed
phase images without DPC input (NeuPh(-DPC)), without cell decoding (NeuPh(-cell)),
and with complete NeuPh reconstruction (NeuPh) are shown. The MSE and FM values
are noted at the bottom of the figures. For Hela cells fixed in Ethanol (Hela(E)), the PSNR
and SSIM values for NeuPh(-DPC) are 29.9734dB and 0.7890, respectively, for NeuPh(-
cell) they are 30.2998dB and 0.8043, and for NeuPh they are 30.2943dB and 0.8012. For
Hela cells fixed in Formalin (Hela(F)), the PSNR and SSIM values for NeuPh(-DPC) are
32.2070dB and 0.8319, respectively, for NeuPh(-cell) they are 32.6161dB and 0.8482,
and for NeuPh they are 32.7348dB and 0.8474.
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Fig S7: (a) NeuPh’s robustness to phase artifacts. NeuPh eliminates the background arti-
facts (noted by the block box). The phase histogram of the background areas, measuring
the residual background fluctuations, is shown in the rightmost column. The standard
deviations (σ) are shown at the bottom of the reconstructions. (b) NeuPh outperforms
CNN-based reconstruction method and existing neural networks. Comparison between
the reconstructions by NeuPh (NeuPhF), CNN-based (CNNF) networks, GAN (GANF)
and traditional NF network (NFF), benchmarked by the ground-truth model-based recon-
struction. Zoomed-in regions showcase intricate subcellular features that can be recon-
structed with better resolution by NeuPh than other neural networks, as highlighted by
the red circles and arrows. The reconstructed spectra are shown at the bottom left of each
image, with blue, red, and brown circles indicating the bandwidth of the objective (0.1
NA), BF measurements (0.2 NA), and theoretically achievable reconstruction bandwidth
(0.51 NA), respectively. The MSE and FM are noted at the bottom of figures.

30



H
el

a 
(F

)

Model-based FPM NeuPhF(16)
MSE: 0.1158
SSIM: 0.8294

NeuPhF(1)
MSE: 0.1554
SSIM: 0.7997

NeuPhE(18)
MSE: 0.1568
SSIM: 0.8043

NeuPhE(1)
MSE: 0.2704
SSIM: 0.7511

NeuPhF:Sim(8:8)
MSE: 0.1308
SSIM: 0.7993

NeuPhF:Sim(1:15)
MSE: 0.1594
SSIM: 0.7789

NeuPhSim(16)
MSE: 0.2864
SSIM: 0.6994

rad

0
10

10	µm

50	µm

𝒙

𝒚

Fig S8: Strong generalization capability of NeuPh. Reconstructions of formalin-fixed
Hela cells with different dataset-trained networks.
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Fig S9: NeuPh’s ability to generalize from an experimental dataset to simulated datasets.
The training dataset comprises 18 pairs of Hela cells captured experimentally and fixed in
ethanol. Our testing dataset ground truth consists of background-removed and spectrum-
adjusted natural images. NeuPh reconstruction demonstrates that our network can ef-
fectively reconstruct images such as cars, butterflies, and trees, which were not “seen”
during the training process. The MSE and SSIM are noted at the bottom of the images.
The PSNR values for “car”, “butterfly”, and “tree” are 22.0678 dB, 22.7288 dB, and
20.1957 dB, respectively. Additionally, the FM values for “car”, “butterfly”, and “tree”
are 0.0164, 0.0167, and 0.0149, with corresponding ground truth FM values of 0.0256,
0.0198, and 0.0230, respectively.
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Fig S10: The reconstruction of Hela cells using NeuPh and CNN-based structure trained
with different datasets. The networks trained and tested with different types of datasets
are indicated in red. The MSE and FM are noted at the top right of each figure, while
other metrics are presented in Table S3.
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Fig S11: Wide-FOV high-resolution reconstructions of Hela cells fixed in ethanol using
NeuPh networks trained with different datasets.
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Fig S12: Wide-FOV high-resolution NeuPh reconstruction of Hela cells fixed in formalin.
(a) BF intensity image captured over a 2160-pixel diameter (3.51 mm) FOV. Wide-FOV
NeuPh reconstruction by (b) NeuPhF(16) and (c) NeuPhSim. (d-g) Selected subareas ex-
tracted from the central to the edge of the FOV, identified as i-iv and enclosed within
different colored boxes. (d) BF intensity image. (e) model-based FPM reconstruction.
(f) NeuPhF(16) reconstruction trained with the experimental dataset. The experimental
dataset used for training the NeuPh network is obtained from the central region, indi-
cated by the dashed black square. (g) NeuPhSim reconstruction trained with the simulated
dataset. NeuPh can successfully reconstruct full-FOV high-resolution images and elimi-
nate the artifacts introduced by the model-based reconstruction, as shown in iv.
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Fig S13: Wide-FOV high-resolution reconstructions of Hela cells fixed in formalin using
NeuPh networks trained with different datasets.
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Table S2: Quantitative metrics for comparison between NeuPh without DPC initializa-
tion input (NeuPh(-DPC)), without cell decoding (NeuPh(-cell)), and NeuPh (mean ±
standard deviation). In this context, “Hela (E)” and “Hela (F)” refer to fixed Hela cells
preserved in ethanol (E) and formalin (F), respectively. The following metrics were com-
puted by comparing the 100 high-resolution phase images (1500× 1500 pixels) predicted
by the different networks and the model-based FPM reconstructions. The reconstruction
patches were extracted from FOVs beyond those in the training dataset.

Dataset Method MSE PSNR(dB) SSIM FM

Hela (E) NeuPhE(18)(-DPC) 0.1798±0.0621 29.9059±1.7272 0.7961±0.0233 0.0618±0.0110
NeuPhE(18)(-cell) 0.1753±0.0604 30.0121±1.7274 0.7994±0.0245 0.0611±0.0108
NeuPhE(18) 0.1753±0.0606 30.0157±1.7363 0.7999±0.0243 0.0609±0.0107
Model-based FPM - - - 0.0689±0.0141

Hela (F) NeuPhF(16)(-DPC) 0.2068±0.0728 30.7228±2.0886 0.7820±0.0479 0.0445±0.0064
NeuPhF(16)(-cell) 0.2001±0.0688 30.8585±2.0770 0.7815±0.048 0.0435±0.0061
NeuPhF(16) 0.1978±0.0685 30.9115±2.0947 0.7817±0.0484 0.0445±0.0061
Model-based FPM - - - 0.0479±0.0080
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Table S3: Quantitative metrics for comparison between NeuPh and CNN. In this con-
text, ”Hela (E)” and ”Hela (F)” refer to fixed Hela cells preserved in ethanol (E) and
formalin (F), respectively.” Figure” indicates the evaluated figure. Here, we consider the
model-based FPM reconstruction as the ground truth for assessing the performance of the
networks.

Dataset Figure Method MSE PSNR(dB) SSIM FM

Hela (E) Fig. 3 CNNE 0.3816 25.6853 0.6912 0.0342
NeuPhE 0.2229 28.0203 0.7219 0.0501
Model-
based FPM

- - - 0.0592

Hela (E) Fig. S10 CNNE 0.1360 29.3833 0.7677 0.0520
NeuPhE 0.1068 30.4336 0.7816 0.0610
CNNF 0.1631 28.5938 0.7380 0.0419
NeuPhF 0.1305 29.5632 0.7786 0.0486
Model-
based FPM

- - - 0.0789

Hela (F) Fig. S7 CNNF 0.3053 26.7357 0.7994 0.0322
NeuPhF 0.2064 28.4360 0.8303 0.0334
Model-
based FPM

- - - 0.0390

Hela (F) Fig. S10 CNNF 0.1985 28.6055 0.7727 0.0378
NeuPhF 0.1657 29.3893 0.7943 0.0399
CNNE 0.2963 26.8670 0.7505 0.0460
NeuPhE 0.2623 27.3954 0.7624 0.0499
Model-
based FPM

- - - 0.0511
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Table S4: Quantitative metrics for comparison between NeuPh and CNN (mean ± stan-
dard deviation). In this context, “Hela (E)” and “Hela (F)” refer to fixed Hela cells pre-
served in ethanol (E) and formalin (F), respectively. The following metrics were com-
puted by comparing the 100 high-resolution phase images (1500× 1500 pixels) predicted
by the different networks and the model-based FPM reconstructions. The reconstruction
patches were extracted from FOVs beyond those in the training dataset.

Dataset Method MSE PSNR(dB) SSIM FM

Hela (E) CNNE 0.2899±0.1078 27.8779±1.3687 0.7402±0.0315 0.0537±0.0089
NeuPhE 0.2261±0.0816 28.9374±1.4266 0.7442±0.0288 0.0610±0.0100
CNNF 0.3208±0.0993 27.3610±1.5195 0.7208±0.0348 0.0430±0.0073
NeuPhF 0.2642±0.0882 28.2321±1.6716 0.7534±0.0271 0.0473±0.0080
Model-based FPM - - - 0.0689±0.0141

Hela (F) CNNF 0.2947±0.0634 28.9795±1.2844 0.7560±0.0513 0.0396±0.0051
NeuPhF 0.2304±0.0584 30.1360±1.6085 0.7756±0.0489 0.0422±0.0058
CNNE 0.3911±0.1167 27.8709±1.1355 0.7309±0.0500 0.0479±0.0065
NeuPhE 0.3015±0.0869 28.9929±1.1656 0.7292±0.0556 0.0522±0.0071
Model-based FPM - - - 0.0479±0.0080
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Table S5: Quantitative metrics for different dataset trained NeuPh. “Hela (E)”, and “Hela
(F)” refer to Hela cells fixed in ethanol (E) and formalin (F), respectively. For the experi-
ment dataset, we use model-based FPM reconstruction as the ground truth.

Dataset Method MSE PSNR(dB) SSIM FM
Hela (E) NeuPhE(18) 0.0949 30.9448 0.8026 0.0591

NeuPhE(1) 0.1044 30.5291 0.7705 0.0582
NeuPhF(16) 0.1147 30.1204 0.7913 0.0550
NeuPhF(1) 0.1262 29.7082 0.7779 0.0485
NeuPhE:Sim(9:9) 0.1016 30.6507 0.7954 0.0558
NeuPhE:Sim(1:17) 0.1177 30.0093 0.7707 0.0518
NeuPhSim(18) 0.1490 28.9874 0.7100 0.0576
Model-based
FPM

- - - 0.0789

Hela (F) NeuPhF(16) 0.1158 30.9461 0.8294 0.0429
NeuPhF(1) 0.1554 29.6702 0.7997 0.0395
NeuPhE(18) 0.1568 29.6301 0.8043 0.0433
NeuPhE(1) 0.2704 27.2629 0.7511 0.0466
NeuPhF:Sim(8:8) 0.1308 30.4170 0.7993 0.0421
NeuPhF:Sim(1:15) 0.1594 29.5575 0.7789 0.0406
NeuPhSim(16) 0.2864 27.0143 0.6994 0.0421
Model-based
FPM

- - - 0.0511
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Table S6: Quantitative metrics for networks trained with varied datasets (mean ± standard
deviation). In this context, “Hela (E)” and “Hela (F)” refer to fixed Hela cells preserved
in ethanol (E) and formalin (F), respectively. The following metrics were computed by
comparing the 100 high-resolution phase images (1500 × 1500 pixels) predicted by the
networks trained with different datasets and the model-based FPM reconstructions. The
reconstruction patches were extracted from FOVs beyond those in the training dataset.

Dataset Method MSE PSNR(dB) SSIM FM
Hela (E) NeuPhE(18) 0.1753± 0.0606 30.0157± 1.7363 0.7999± 0.0243 0.0609± 0.0107

NeuPhE(1) 0.2233± 0.0818 29.0015± 1.3947 0.7275± 0.0344 0.0573± 0.0099
NeuPhF(16) 0.2356± 0.0848 28.7574± 1.8154 0.7715± 0.0231 0.0531± 0.0095
NeuPhF(1) 0.2591± 0.0872 28.3186± 1.6702 0.7516± 0.0290 0.0463± 0.0079
NeuPhE:Sim(9:9) 0.1792± 0.0589 29.9085± 1.7085 0.7986± 0.0241 0.0597± 0.0106
NeuPhE:Sim(1:17) 0.2241± 0.0769 28.9600± 1.4084 0.7431± 0.0267 0.0534± 0.0102
NeuPhSim(18) 0.3347± 0.1217 27.2564± 1.4643 0.6282± 0.0307 0.0582± 0.0116
NeuPhSim 0.3704± 0.1290 26.7218± 1.6527 0.6435± 0.0310 0.0772± 0.0157
Model-based - - - 0.0689± 0.0141

Hela (F) NeuPhF(16) 0.1978± 0.0685 30.9115± 2.0947 0.7817± 0.0484 0.0445± 0.0061
NeuPhF(1) 0.2322± 0.0685 30.1063± 1.6490 0.7738± 0.0499 0.0419± 0.0059
NeuPhE(18) 0.2074± 0.0467 30.5551± 1.2916 0.7934± 0.0469 0.0448± 0.0065
NeuPhE(1) 0.3075± 0.0917 28.9166± 1.1433 0.7252± 0.0557 0.0483± 0.0066
NeuPhF:Sim(8:8) 0.2092± 0.0690 30.6509± 2.0096 0.7825± 0.0480 0.0438± 0.0060

NeuPhF:Sim(1:15) 0.2386± 0.0599 29.9841± 1.5689 0.7805± 0.0437 0.0425± 0.0065

NeuPhSim(16) 0.3491± 0.0880 28.3090± 1.0581 0.6748± 0.0575 0.0438± 0.0071
NeuPhSim 0.3358± 0.0713 28.4408± 1.4819 0.6527± 0.0598 0.0503± 0.0092
Model-based - - - 0.0479± 0.0080
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